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A method for analyzing cluster coagulation is presented which relies 
on a Monte-Carlo analysis of individual particles as they interact and 
form clusters from a homogeneous, monodisperse medium. Four case 
studies are shown, three of which compare the results of the code to the 
known analytic solutions of the Smoluchowski equation and the fourth 
considers the cluster size spectrum obtained from a generalized analytic 
recurrence solution to the Smoluchowski equation which allows, in 
principle, the generation of the entire cluster size distribution from the 
partial distribution given by the Monte-Carlo code. 0 1992 Academic 

Press, Inc. 

I. INTRODUCTION 

The method that is presented here has its inspiration in 
the desire to compute the internal structure as well as the 
cluster size spectrum of clusters that have coagulated from 
a chemically nonhomogeneous, monodisperse medium. 
This problem occurs frequently in many fields ranging from 
meteorology, where the computation of nucleation rates for 
acidic water droplets can be applied to the problems of 
smog and acid rain formation, to astrophysics, where the 
process of dust formation in stellar environments plays an 
important role in understanding the dynamics and evolu- 
tion of the interstellar medium. 

Whenever a new method is developed to investigate 
a complicated dynamic system, some simplifications are 
usually necessary to make the problem more tractable to 
solution. In this paper it has been assumed that the medium 
is chemically homogeneous and that particles stick together 
whenever they collide. The problem of nucleation is then 
avoided and the program becomes more applicable to 
solving the Smoluchowski equation (see Eq. (13)). Binning 
methods are the basis for most routines that obtain solu- 
tions to the Smoluchowski equation. This is due to the large 
range in scales that is inherent in cluster formation. Since a 
one micron particle can easily contain over lo9 atoms and 
it is currently impossible to store all this information 
efficiently, one is forced to bin the clusters into a number of 
different size ranges. Although the use of this method has 
produced profound results, it does not lead to a simple way 

of investigating the internal structure of the clusters, which 
is one of the final aims (although unfulfilled in this paper) of 
this research. 

One natural approach to this problem is to use the 
Monte-Carlo method to simulate the aggregation of clusters 
from gaseous material. This is done by observing the 
individual behavior of particles in a large reservoir of 
(initially) gaseous material as it develops with time. Of 
course the number of particles in a gaseous medium can 
easily be of order 1O23 or higher and it is impossible to 
monitor the behavior of each particle individually, so a sam- 
ple of lo5 randomly distributed test particles are chosen and 
it is assumed that their subsequent behavior is an indicator 
of the behavior of the medium as a whole (Fig. la). Such an 
assumption may be tested by comparing the direct simula- 
tion Monte-Carlo (DSMC) results with the three known 
analytic solutions to the Smoluchowski equation. In all such 
comparisons, the DSMC results are found to reproduce the 
expected distributions within the tolerances of statistical 
error. 

The DSMC method is able to overcome the problem of 
limited memory storage, because only the test particles need 
to be observed and since a 32-bit memory element can easily 
store integer numbers up to around 109, there is no impedi- 
ment (besides computer time) in obtaining cluster sizes 
of physical interest. Indeed a general recursive solution to 
the Smoluchowski equation can be derived which, when 
coupled with the DSMC results, allows the computa- 
tion-in principle-of the cluster size distribution to a much 
larger size. 

II. DSMC METHODS 

If a gas contains an assortment of different sized clusters, 
then the probability (RJ per unit time of a cluster that 
contains i structural units (we call this an (i} cluster) 
interacting with any other cluster excepting itself is 

j= 1 Y 
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FIG. 1. (a) The Monte-Carlo code can only examine to4 or lo5 
particles at a time. Since a reasonably sized system of gas contains 
approximately 102’ particles, it is necessary to consider a subsystem of the 
total system and assume that the behavior of the subsystem duplicates the 
system as a whole. (b) The subsystem satisfies the constraint of periodic 
boundary conditions; i.e., as a particle moves out, an identical particle 
moves in to the system. (c) It is important that a robust number of clusters 
be resident in the subsystem, since the error in the simulation goes like the 
square root of the total cluster number. As clustering proceeds, the total 
number of clusters within the subsystem must decrease. When the number 
of clusters becomes too small, we protect against statistical fatigue by 
simply adding the subsystem to itself, thereby doubling the number of 
clusters in the subsystem. 

where nj is the number density of the { j} species in the total 
system, V is the volume of the system, and crii and (uij) is 
the cross sectional area of interaction and the mean relative 
speed, respectively, between the (i> and {j} species. 
Usually nj B 1 and so we can make the approximation 

Ri= f njali(v,i). (2) 
j= 1 

The mean time for an {i} cluster interacting with any other 
cluster (ri) is then 

ri=l !i f nja,i(v,i). 

The direct simulation Monte-Carlo code takes a sub- 
system of test particles (usually lo4 to lo5 particles) from 
the reservoir of gas (Fig. la). Periodic boundary conditions 
are assumed: particles moving out of the subsystem are 
immediately replaced by identical particles moving into the 
subsystem (Fig. lb). Let Fj denote the number density of 
the {j} species for the test particles, let Fc be the total 
number of clusters in the subsystem, and let n, be the total 
number of clusters in the total system; then we can relate 
the number densities of the test particle subsystem to the 
number densities of the total system, 

where 

cj-3 
F,. - n,’ (4) 

max i co 

F,= cd Fj and n,= C nj. (5) 
j=l j= I 

Substituting (4) into (2) and (3) implies that 

and 

(6) 

The Monte-Carlo code examines each cluster in turn and 
decides whether that cluster will interact with any other 
cluster in the distribution. The probability of a single (i> 
cluster interacting with any other cluster during a time dt 
(Pri(dt)) is approximately At/2ri or, more exactly, 

Pri(At)= l-exp -g . 
( 1 

The factor of two arising, because during each time step At 
the clusters are double counted and so the computed rate of 
interaction is twice the actual physical rate. As the system 
evolves, the value of ri will also change and it is therefore 
not prudent to keep a fixed At. To overcome this problem, 
At is made time dependent and is defined to be the minimum 
of all the ri’s obtained at the previous timestep multiplied by 
a constant: 

A tnew = amin(zl, z2, r3, . . . . Tmaxi)lr-dr”ld~ (9) 

Accurate results are generally obtained when the multi- 
nlicative constant. tl. has the value of 0.1 or less. I j=l I 
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As is standard in Monte-Carlo simulations, if we have 
the condition that G-the random number generator 
(GE [O, l])-is less than Pri(dt) then the {i} cluster will 
stick to some other cluster. To find out with which cluster 
the {i} cluster will interact, it is necessary to compute the 
probability of interaction between the {i> cluster and any 
other cluster in the subsystem, this being simply 

(10) 

After generating another random number G, it is possible 
to determine the size of the cluster with which the {i} cluster 
will interact, from the condition 

k-l 

C f’,<Gd i Pii, (11) 
j= I J=l 

which in this case implies that a {k} cluster will combine 
with the (i} cluster. 

A schematic example illustrates how the code works. The 
data structures that contain the clusters are two arrays 
which are called “old” and “new.” In Fig. 2a the first element 
of the “old” array contains a cluster of size 10 structural 
units, the second element contains a { 20) cluster, and so on 
to the end of the array. At the start of a timestep, “new” and 
“old” are identical and they will remain that way if there are 
no interactions between the clusters. Each cluster in “old” is 
considered in turn and, if the probabilities computed by 
Eq. (8) are such that there is no interaction, then the 
program will go on to consider the next cluster in the array. 
Suppose, however, that a cluster is found which is about to 
interact with some other cluster. 

In Fig. 2b the program has determined that the { 15) 
cluster in array element m is just such a cluster. From 
Eq. ( 11) it is then found that the { 3) cluster at position k in 
“old” is going to combine with the chosen { 15} cluster. 
Corresponding clusters are located in the “new” array, 
where the { 3) cluster is combined with the { 15} cluster in 
“new,” which leaves a { 0 } cluster where the { 3 } cluster used 
to be and an { 18) cluster in place of the original { 15} 
cluster (see Fig. 2~). These reactions or non-reactions are 
continued until the last element in “old” has been checked. 
The “new” array is then copied onto the “old” array and the 
process is repeated for the next timestep. As can be seen 
from Fig. 2, this method allows double counting to occur; 
e.g., not only can the (3) cluster interact with the (151 
cluster, but it is possible that the { 15} cluster will interact 
with the { 3) cluster, since the “old” array remains 
unchanged during one timestep. Statistically, we account for 
this double coagulation via the factor of 2 in Eq. (8). 

If coagulation is continued for a long time, the number of 
clusters in the subsystem will decrease to a point where the 
results will become statistically unreliable. To stop this from 

1 2 
10120/ . ‘old 

W 

101204 ‘new’ 

(2b) 

10124 . 131 . . 1151 . ‘new’ 

I 

1 2 k m 
10120( . . . 131 . . . 1151 . . ] ‘old 

UC) 

10120( 101 . . . 1181 1 ‘new’ 

FIG. 2. Schematic portrayal of a “reaction.” Two arrays called “old’ 
and “new” are required. Initially “old” and “new” are the same (Fig. 2a), 
until Eq. (8) chooses the { 15) cluster at array element m to be a reaction 
particle (Fig. 2b). The reaction partner is then found by Eq. (11) to be the 
{ 3) cluster at array elment k. Finally, in Fig. 2c the { 3) cluster is combined 
with the { 15} cluster, leaving a {O} cluster and an j18) cluster in the 
“new” array. 

happening, new particles are allowed into the subsystem 
before statistical fatigue occurs. This “topping up” can be 
accomplished from the assumption that the subsystem 
simulates the behavior of the total system and so the 
probability of obtaining a cluster of size k (Pk) is then 

It iS then a simple matter of multiplying Pk by a larger Fc, 
which in turn will give a larger Fk, and the program once 
again has a robust number of particles. Figure lc provides 
a more intuitive description: here we simply double the 
number of particles in the subsystem, which is equivalent to 
adding an exact copy of the subsystem to itself. A more 
detailed description of this process complete with error 
analysis is given in Appendix B. 

III. DSMC VERSUS THEORY 

Naturally the DSMC method should be compared to 
known clustering results to determine whether it is a valid 
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method of analysis. In this section the validity of the method 
is tested by comparison with the most famous and well- 
studied aggregation equation: the Smoluchowski equation, 

(14) we now can relate the DSMC method developed in 
Section II to the solutions of (13), by assuming that the 
clusters stick together whenever they collide. 

Case 1. K,= A. If we define n as the number of struc- 
tural units or atoms in the total system then the analytic 
solution (which was first obtained by Smoluchowski [6]) of 
Eq. (13) for the initial condition n, =n (or n,.(t=O) =n) 
and the case K, = A is 

dn, z=iIz: Ki(k-i)n,n(k-,)-nk j?, Kikni, (13) 

where r is the time, K,, is the kinetic coagulation kernel of 
the reaction, and nk is the number density of the (k} cluster. 

The first term on the right-hand side of the Smoluchowski 
equation refers to the formation of the {k} species by 
the reaction of the (i} and {k - i} species, so that 
it (k-i) = k, the second term, keeps tab of the dis- 
appearance of the (k} term via the creation of {k + i} 
species. The one-half factor arises because one counts the 
same terms twice in the sum. Analytic solutions for the 
Smoluchowski equation have only been found for the cases 
K,=A, K,j=A(i+j), and K,,=A(i*j) (see Refs. [l-9]), 
where A is an arbitrary positive numerical constant. By 
noting that K,n,n, is the probability per unit time per unit 
volume that the event {i} + {j} = {i + j} will occur, then it 
can be deduced that 

(nAt/2)k ’ 
nk=n (1 +nAt/2)k+1’ (15) 

From Eq. (15) one can show: 

(16) ,,flnk= n 1 + nAt/2’ 

So the probability of obtaining a cluster containing k atoms 
tPk) is 

(17) 
(nAt/2)k- ’ 
(1 + nAt/2)k’ 

K,=cr,(v,), (14) 
Defining 0 to be the ratio of the number of structural units 
to the number of clusters gives where crii is the cross section of interaction and (vii) is the 

mean relative speed between an {i} and a { j} cluster. Using 

s(t)=;= 1 +y. 
I 

(18) 

cwvefir gives 
0 = 0.99872 + I.00111 

800- 

600 - 

theoretically expected result: 
0 : tcl 

Placing n=2.7x 10’9cmp3 and A = 2/n x 7.407 x 
10e2’ cm3 s-l into the DSMC code and Eq. (18) allows the 
construction of Fig. 3. The probability spectrum for the 
cluster sizes is shown in Fig. 4, where the DSMC results are 
plotted against the theoretical line from Eq. (17). 

v- 
0 200 400 600 800 loao 

t (s) 
FIG. 3. The ratio of the total number of structural units to the total 

number of clusters (0) as a function of time (1) for the case KY= 
7.407 x lo-” cm3 s-‘. Approximately lo* clusters exist in the sample sub- 
system at any one time. The total system is assumed to contain 2.7 x lOI 
structural units/cm3 at t =0 and at t = 1000 s the subsystem contains lo9 
structural units. The DSMC results follow the theoretical results so closely 
that the line of best tit is nearly identical to the theoretical result. 

FIG. 4. The probability of obtaining a c!uster containing k structural 
units versus the size of the clusters at I = 1000 s. Both the theoretical line 
and the DSMC results are shown, where the largest cluster formed by the 
Monte-Carlo simulation, contains approximately 20,000 structural units. 
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thus P, has the form t 9 c theoretically expected result: 0 = e’ 

E i - 0 (theory) 

a 
i 

A 0 @MC) : 

0 05 1 1.5 2 2.5 3 3.5 4 

time (s) 

FIG. 5. The ratio of the number of structural units over the number of 
clusters as a function of time for the case K,, = A(i+j), where 
A x 3.7 x lo-” cm3 s-’ and the initial density of the gas = 2.7 x 1OL9 cm-‘. 
A comparison is made between the theoretically expected results given by 
Eq. (20) and the results given by the DSMC code. 

Case 2, K, = A(i + j). The analytic solution for the 
Smoluchowski equation for the initial condition n, = n (or 
n,(t=O)=n)andcaseK,=A(i+j)(seeRef. [2])is 

n,=nGe --nAz(l _e-nAr)k~le-k(l~e-“A’). 

It can also be shown independently that 

(19) 

(20) 

100 

k 

FIG. 6. The probability of obtaining a cluster containing k structural 
units versus the number of structural units in each cluster. The theoretical 
result is shown as the unbroken line, while the “experimental” results from 
the Monte-Carlo program are represented by open triangles. The simula- 
tion starts at time t = 0 with a monodisperse medium (i.e., the gas consists 
entirely of structural units with no clusters containing two or more struc- 
tural units) and the results presented here show the system at t = 2.909 s. 
The set of triangles at the 3 x lo-’ level demonstrate the highly statistical 
nature of the simulation. As more clusters containing approximately 2000 
structural units are formed, the statistical error will decrease and the 

kkp1 
_ k! (1 -,-nAt)k-1 e~k(l-e-“A’). 

(21) 

In this example, n is the same as in Case 1 and A z 
3.7 x 10Pzo cm3 s-l. The comparisons between the theoreti- 
cal results and the DSMC results are shown in Figs. 5 and 6. 

Case 3, K,= A(i*j). The theoretically predicted be- 
havior of the solution to the Smoluchowski equation for the 
case K, = A(i*j) is unusual, because after a finite time a 
supercluster or “runaway” mass is formed (see Refs. [ 3,4,7, 
9, 11, 121). The ratio of the number of structural units in the 
subsystem to the number of clusters in the subsystem is 
given by 

O(t)= l/( 1 -y, Od&, (22) 

the formation of the supercluster occurring at r = l/nA. P, 
now has the form 

p =kkp2 (nAt)k-’ -knAf 
k k! (l-~zAt/2)~ ’ 

O<t<$. (23) 

For times greater than l/nA, an analytic solution to the 
classical Smoluchowski equation is not possible. The 
reasons for this breakdown are discussed in [ 111 and will 
not be given here. However, a semi-analytical solution due 
to a modified Smoluchowski equation can be given which 

tc n 
6 

0 @MC) 

J, ,,, ,1/ /, 1, I ,i 
0 02 04 0.6 0.8 1 1.2 1.4 

time (5) 

FIG. 7. The ratio of the number of structural units over the number of 
clusters as a function of time for the case K,, = A(i *j), where A = l/n = 
3.7 x 1O-2o cm3 s-’ (n-the initial density of the gas = 2.7 x 1Or9 cmm3). 
A comparison is made between the theoretically expected results given by 

simulation results will approach the theoretically expected results. Eq. (22) and the results obtained from the DSMC code. 
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k 

FIG. 8. The probability of obtaining a cluster containing k structural 
units versus the number of structural units in each cluster. The theoretical 
result given by Eq. (23) is shown by the line, while the “experimental” 
results from the DSMC program are represented by triangles. The simula- 
tion starts at time t= 0 with a monodisperse medium and the results 
presented here show the system at t = 0.69 s. 

allows for the formation of a runaway cluster (see 
Ref. [ 111). This behavior of a continuous solution suddenly 
changing to a continuous plus discrete solution is 
demonstrated by the DSMC results which are shown in 
Figs. 7, 8, and 9, where in this example n = 2.7 x 10” cmP3 
and A z 3.7 x 10Pzo cm3 s-’ (Therefore, nA = 1 SK’). 

Figures 7 and 8 demonstrate the agreement of the 
theoretical and Monte-Carlo results for times less than 1 s. 
Figure 9 shows that for t = 1.33 s the “small” clusters still 
approximately agree with Eq. (23), while-as expected 
-the large “Monte-Carlo” clusters have all congealed into 

--‘““” 

FIG. 9. As discussed in the text, when t is greater than l/nA the 
theoretical solution given by Eq. (23) breaks down and a super cluster or 
gel begins to form. This behavior is illustrated in the above figure, which 
plots the probability of obtaining a cluster containing k structural units 
versus k. Interestingly, only live differently sized clusters are found to exist 
at t = 1.334 s: k = 1, 2, 3, 4, and 11,500. Also the theoretically expected 
values and the Monte-Carlo results agree only for k = 1, 2, 3, and 4. The 
supercluster has begun to dominate the reaction and has consumed all but 
the smallest clusters. 

one super cluster. This is due to the multiplicative nature of 
the reaction cross section: crij cc K,, which for times > 1.0 s 
causes the largest cluster to dominate just about all the 
reactions. 

IV. RECURSIVE INDUCTION 

As demonstrated in Section III, one can obtain a fairly 
adequate cluster size spectrum from the DSMC technique. 
Unfortunately the extent of the size spectrum that can be 
mapped is a function of the number of particles that are 
considered in the Monte-Carlo subsystem and, as such, is 
limited. It would be advantageous to have a method which 
could derive information from the Monte-Carlo data to 
map out the cluster size spectrum to an arbitrarily sized 
cluster. 

Such a process is made possible via the use of Eq. (A25) 
which is derived (assuming monodisperse initial conditions) 
in Appendix A and has the form: 

K(t) k-’ 
Pk(t) = ck- 1j ;F, K,,k-i,p,(t) Pk-i(f). (24) 

The quantity N(t) may be expressed analytically as 

Monte Carlo 
(25) 

(the terms e7 and /i are mathematical quantities obtained in 
the derivation of (24)-see Appendix A), but for computa- 
tional purposes N(t) is determined from the Monte-Carlo 
results (see Eq. (A24)). Once a value for N is obtained we 
can use (24) to determine P, from {P,, P,, P,, . . . . P& 1 >. 
Equation (24) is an exact general solution to the 
Smoluchowski equation; however, the accuracy of the solu- 
tions obtained is dependent on N. An analysis of the error 
propagation is given in Appendix C; however, for this 
section it will suffice to consider a graphical description of 
the process. 

Figure 10 shows a trial with the Case 2 (see Section III) 
coagulation kernel, K, = A(i + j). At t = 0.242 s the Monte- 
Carlo code has mapped out the size spectrum for clusters 
containing 1, 2, 3,4, 5, 6, 7, 8, and 11 structural units. From 
this information, a value of K is obtained and P, is 
calculated for k E (9, 10, 12, 13, . . . . loo}, but for ease of 
viewing only the values k = 9, 10, 20, . . . . 100 are shown. 
Also shown in Fig. 10 is the line that plots the theoretically 
determined solution. As can be seen from Fig. 10, there is 
respectable agreement between the values given by (24) and 
the theoretically expected values obtained from Eq. (21). 

It should be emphasized, that (A24) allows the computa- 
tion of Pk to magnitudes that would be impossible to com- 
pute if one were to rely on DSMC technique alone. This can 
be seen from Fig. 10 which shows values of P, down to 
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= 0.242s 

1 10 100 1000 

k 
FIG. 10. P, versus k for the Case 2 (see Section III) coagulation ker- 

nel: K, = A(i + j). At t = 0.242 s the Monte-Carlo code has mapped out the 
size spectrum for clusters containing 1, 2, 3, 4, 5, 6, 7, 8, and 11 structural 
units (open squares). From this information, a value of N is obtained and 
Pk is calculated via (24) for k E (9, 10, 12, 13, . . . . lOO}, but for ease of 
viewing only the values k=9, 10, 20, . . . . 100 are shown (dark triangles), 
Also shown in Fig. 10 is the theoretically determined solution (solid line). 

10P3’. To obtain such values from the DSMC code would 
require memory capacity and processing speeds far beyond 
those obtained by present day computers. Unfortunately, as 
is shown in detail in Appendix C, the rapid growth of errors 
in (24) limits the utility of this equation. 

CONCLUSION 

A method for analyzing cluster coagulation has been If we assume that classical statistics are appropriate 
presented which relies on a Monte-Carlo analysis of for describing this system; i.e., each monomer is dis- 
individual particles as they interact and form clusters from tinguishable, each cluster size is distinguishable, but 
a homogeneous monodisperse medium. Three case studies permutations of the structural units within a cluster are 
have been presented, which compare the DSMC results to ignored, then we can apply a number of state functions that 

equation (Eq. (13)). In all such comparisons, the DSMC 
results are found to reproduce the expected distributions 
within the tolerances of statistical error. 

The kinetic coagulation kernels that allow analytic solu- 
tions to the Smoluchowski equation, K, = A, K, = A(i + j), 
and K, = A (i *j), usually have little relevance to problems 
that arise in nature. Remembering that K,= c,, (vq), 
the DSMC method should be able to handle any non- 
infinite functional form of o~(v,,). For example, a dilute 
Maxwellian gas, consisting of hard spheres, has gii ( vii) = 
A(i P1 + j -‘)l” (ill3 + j”3)2. Thus with the appropriate or, 
and (v,,), the DSMC method can be used to tackle “real” 
world problems. The only limitation being that of computer 
time. 

In the fourth case that is studied, a recursive induction 
technique is discussed. The technique gains its name, 
because it uses the Smoluchowski equation and the DSMC 
results to obtain P,‘s for higher k’s than can be obtained 
from the DSMC method. The recursive induction equation 
(Eq. (24)) is only applicable to coagulation systems for 
which the Smoluchowski equation is a valid description. 
Unfortunately, due to the build up of error, the recursive 
induction technique is limited to cases where less than a 
thousand iterations are required. 

APPENDIX A: PROBABILITY RECURSION FORMULA 
FOR THE SMOLUCHOWSKI EQUATION 

As stated in Section III the Smoluchowski equation has 
the form 

where the nk of Eq. (13) has been replaced with N,-the 
number of clusters that contain k structural units =nk V 
and the coagulation kernel of Eq. (13): K, has been replaced 
by JC~, where rcij = KY/V, V being the volume of the system. 
Nk satisfies the constraints, 

,z, Nk = N, (A21 

f kN,=N, (A3) 
k=l 

N, being the total number of clusters and N is the total 
number of structural units in the system (N, N,. < co). 

the three known analytic solutions of the Smoluchowski were developed by Stockmayer [lo]. 
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The number of ways of producing the size distribution are uniformly convergent and t E [0, rO] for K, < A(i*j) 
(N,, N,, N3, . ..). given the constraints (A2) and (A3), is (see [4] for a proof of this assertion). 
denoted by Q(N, N,: N,, N2, N3, . ..). where Combining (AlO) with (Al) and the Weierstrass M test, 

sZ(N, IV,.: N,, N,, N,, . ..) 
it is possible to show that 

= N, ! N,! N,! ... 
N! ($N’($)“‘(w”i-., (A4) 

m d(N,) 
k:, dt (All) 

wk being the number of ways of forming a (k} cluster from is uniformly convergent for t E [0, so] and rcb < A(i *j). Now 
k structural units (which implies that w, = 1). combining (AlO) and (All) we have (A9). 

A derivation of (A4) is given in [7]. From (A4) one can Using (A8) we can write 
use Lagrange multipliers to determine the most probable 
cluster size distribution (N:, NT, NT, . ..) via the auxiliary 
function, (A121 

F(N,, N2, N,, . ..)=lnQ(N. N,,: N,, N,, N,, . ..) 

- yNc - W, (A5) Placing (A12) into (A7), 

where y and a are Lagrange multipliers. Setting aF/aN, 
equal to zero and using Stirling’s approximation for large 
N, (ln(N, !) z Nk ln(N,) - Nk), one obtains 

wk Nk*=-e-Y-flk 

k! ’ (.46) 

Substituting (A6) into (Al) and multiplying both sides of 
the result by k ! e(2Y+Bk) gives the result 

wkeY 
d(-?;-pk) z 

dt 
= -Wk C Kik:epflt 

i= 1 z! 

f‘;(k-j)wjwk-i. (A7) 

(A13) 

Now as t + 0, then by the assumed initial conditions, 
Nk -+ 0 Vk/{ 1> and N, + N; therefore, 

N lll=o = e -(~+~)llco=N, 

N wke-j’-DkI,=,=O; kl,=o=z 

(A14) 

(Al5) 

Substituting (A6) into (A2), differentiating with respect to t, 
and rearranging implies 

combining (A14)and (A15)*epBIt=o=0; (A16) 

this and (A14) =>e-?I r=O = co. (A17) 
d(-8) 1 dN< N,.d(-y) =----- 

dt N dt N dt ’ (A8) 
To obtain the desired equation, we require one more 

In Eq. (A8) and all subsequent equations, we have removed result: 

the asterisk that appears on the N,‘s in (A6) with the 
clear understanding that we are now considering the LEMMA Al. Zf rc,<A(i*j) (and O<A<co) then 

most probable values of N, and therefore of N,. In the IdN,/dt( < GO for t E [0, z,], q, > 0. 

derivation of (A8), we have implicitly assumed that Proof 

This can be shown to be true for t E [0, s,,], where ~~ > 0 
and lcii d A(i *j), by using the fact that 

f Nk and f kNk (AlO) 
k=l k=l 

=I-; f 2 ZC,N,N,/. 
k=l i=l 
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By assumption, “ii < A(i *i), therefore, 

k=l I=, k=l i=l 

=AN*<a?; 

therefore, 

I I 

dN, <co 

dt 
Vt E co, %A 

may not have produced a cluster containing that number of 
structural units. Therefore. 

l-P,= c P, 
k=2 

Monte Carlo 

I-P, 

=I?!2 C(ll(k- 1)) CfI,’ Ki(k- j)PiPk-i] 

=K; 6424) 
as reauired. 

I 

Using Lemma Al, (A17), and the initial condition 
substituting (A24) into (A22) gives 

NC = NY Eq. (AlO) becomes 
Pk(t) = (k - 1) i= 1 Icdk X*;f’ -,,P,(t) Pkmi(f), (425) 

(k-l)W, ~it=oz~~~: (t) ICi(k-ijWiWk-i, (A18) where the time dependent nature of P, and K have been 
emphasized. Equation (A25) allows us to compute any Pk 

denoting (d(ey)/dt)l,,o by the symbol A, we have simply subject to the limitations of numerical error, since K is deter- 
mined from the Monte-Carlo results and is therefore an 

(k-l)wkA=~iz’(T)~i(k-i)wiwk~j, 
approximation of the true value. 

(A191 
,=I 

APPENDIX B: TOPPING UP AND ERROR ANALYSIS 

Eq. (A19) being the fundamental equation we require to 
solve the Smoluchowski Equation. Multiplying both sides 

As outlined in Section II, we make the assumption that 
our collection of Monte-Carlo clusters is but a sample of a 

of (A19) by larger population of clusters. We can then define a time- 

e--Y-Dk 
dependent discrete random variable X(t), where 

k! (k- 1)/1 (A201 X(t) is the cluster size at time t 031) 

gives 

ey k-1 

Nk=2(k- 1)/t i=l C Ki(k-i)NiNk-i (A21) ( 1 
XE 2 ... m 

Pl > P2"'Pm 
032) 

and, noting that Pk = Nk/N,, then 
The probability that the random variable X takes the value 
j is then 

“=2(k- l)n i=l K’(k 
eYN,. *Cl ~,,p,p,&,; (A221 

P(x+pj=~, je CL 2, . . . . ml, (B3) 
< 

thus if we can determine ey, A, N,, and P, as a function of 
where N, is the number of clusters that contain j structural 

time, then we will be able to determine the cluster size 
units and N, is the total number of clusters in the sample. 

spectrum by iteration Vk > 1. 
The expectation of X is 

Let us assume that we have run a Monte-Carlo simula- 
tion and that we have a set of nonzero Monte-Carlo values 
for P,: {PI, P,, P,, . . . . Pk,a,), where for all k > k,,,, 
P, = 0. It should be noted that some of the Pk may be equal 
to zero for some k < k,,, , since the Monte-Carlo simulation 

E(X)= i xkPk= f kP, 
k=l k=l 

=%,kNk N z-E@ 
Nc Nc 

DSMC. V34) 
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The variance has the standard form 

var(X) = E(X2) - (E(X))’ = v2 (say) P5) 

with 

E(X2)= f k2p,. 
k=l 

From the central limit theorem the error in the sample of 
our Monte-Carlo clusters is of order a/A, where 0 is the 
standard deviation of the population distribution. More 
exactly, 

p I @ DSMC - @population I < - z 0.997. (B7) 

As a specific example let us consider Case 2 in Section III, 
where the analytic solution to the Smoluchowski equation 
for the coagulation kernel K, = A( i + j) is compared against 
the corresponding DSMC result. Here Opopulation = e’ 
(Eq. (20)) and so we can compute the relative error via the 
equation 

@ DSMC 6= o - @population 

* population 
(B8) 

and plot it as a function of time (Fig. Bl). The expected 
relative error is of order 

d& 
0 ) population 

U39) 

which from the work of Spouge [7] has the analytic form 

,‘- 1 ‘12 

(--> N,. . @lo) 

Since (BlO) is not very helpful in establishing an upper 
bound on the expected error, we simply set the expected 
relative error to be l/& and plot its behavior as a 
function of time (Fig. Bl ). 

To account for the behavior of all the quantities shown in 
Fig. Bl, we consider what occurs to the Monte-Carlo 
system when the number of particles become small (e.g., 
when l/& > 1% (say)). At this point the system is 
“topped up”; i.e., we increase the number of clusters by 
some factor /I > 1. In mathematical terms we have 

N;=/?N, Vk, (Bll) 

where N6 is the value of Nk just after the “topping up”: 

=z- N;=PN,. (B12) 

7 
0 05 1 15 2 2.5 3 3.5 4 45 5 

t (s) 

FIG. Bl. Expected error (l/A) and actual error (6) as a function 
of time for a system of coagulating clusters with a coagulation kernel 
K, = u,, (u,) = A(i+ j) (A z 3.7 x 10e2’ cm3 s-’ and initial density = 
2.7 x lOI cm--‘). The sawtooth pattern of the expected error is due to the 
“topping up” procedure explained in the text. As can be seen the actual 
error is well within the error bounds as given by Eq. (B7). The detail in the 
actual error curve increases with time, because the mean time of interaction 
(Eq. (3)) decreases as the clusters grow in size. 

All the examples in this paper have used the value fl= 2. So 
if the Monte-Carlo sample initially contains 10,000 par- 
ticles, it will continue coagulating clusters until the system 
contains 5000 clusters, at which point all the cluster num- 
bers will be multiplied by 2, bringing the total number of 
clusters back to 10,000. We can think of this as simply 
increasing the volume of our subsystem by the factor /I, with 
the implicit assumption that the particles outside the sub- 
system are behaving in exactly the same manner as those 
inside the system. It is easily shown that the E(X) and 
var(X) are unchanged by such an operation. 

This multiplicative factor of fl explains the jump in the 
“sawtooth” behavior of l/&. The regularity of the period 
between the jumps can be understood by considering 
Eq. (20) which shows that 

N,,(t) = N(0) ec’. U313) 

Thus the “half-life” of N, is approximately 0.7 s, which is the 
period between the jumps as shown in Fig. Bl. 

Turning to the actual error, we see that it always satisfies 
the condition 

S<2/&. (B14) 

Indeed as time increases, the error at first increases and then 
decreases. Also the fluctuations increase with time, because 
the meantime of interaction and the timestep (as given by 
Eqs. (7) and (9), respectively) decrease as the clusters 
increase in size. Finally, the topping-up procedure does 
appear to increase the error at least for the first live cycles, 
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after which the error decreases, perhaps due to the decrease 
in the timestep. 

APPENDIX c: ERRORS AND RECURSIVE INDUCTION 

The recursive induction equation has the form: 

To provide a simple analysis of error propagation in 
Eq. (Cl), we require the following two assumptions plus a 
lemma: 

(1) The error is contained in the N term, where 
N - %a,, + AK. DSMC - 

(2) The values of Pk as obtained from the DSMC code 
are “exact”; i.e., their individual errors are small and can be 
neglected. 

LEMMA Cl. Suppose the values of P, and N are known. If 
Eq. (C 1) is used to determine the other values of P, , we can 
write 

pk= Kk-lfk(P1), k E N, ((2) 

where 

fk(t)=(k-l) i=, L ‘f’ Ki(k-i)fi(f) fk-i(l) (k> 11, (C3) 

f,(P,)=P,* (C4) 

Proof. Equation (C2) is certainly true for k = 1, 2, 3. 
Suppose Eq. (C2) is true for all k up to k = n - 1 (n > 1) 
then 

pn(r)=(n-l) r=l 
NH$1 Kj(“-j)Pj(f)P,-i(t) 

=&*g’ Kicn-,)rSi~‘~(P1)N”-‘-lf,-i(pl) 
I 1 

=&ng’ Ki(n-i)fi(pl)fn-i(pl) 
I I 

= w- ‘fn(P,). 

So by the principle of mathematical induction Eq. (C2) is 
true for all k E N. 

Now via the stated assumptions and Lemma (Cl) we 
have 

Therefore, 

6P, 5 pk;--~t=(l+~~-‘-l. (C6) 

So if AK/N,,,,, = 0.003 (which is probably true for 
N,. = 100,000) then when k = 100, 6P, z 0.37; k = 1,000 = 
6P, z 22.5 and finally k = 10,000 + 6P, z 5.13 x 1013. 

Suppose the DSMC code gives values for Pk upto some 
k = m. If we then use Eq. (Cl ) to compute the spectrum up 
to k = n > nz, it can be shown that 

,,,,(l +&J$~“-1. (C7) 

This effect can be seen in Fig. C 1, where N, x 100,000 and 
the Pk values obtained from the Monte-Carlo code have 
been used for k = 1 to 400; from k = 500 to 10,000 the P, 
values have been computed via Eq. (Cl). The error in the 
recursive iteration values is simply their vertical distance 
from the theoretical line. So for the k = 5000 point the 
relative error, from Fig. Cl, is approximately 106, while the 
expected relative error, from Eq, (C7), is 6P, < 2.0 x 106. 
This rapid growth of error thus limits the utility of Eq. (Cl ) 
to cases where the number of iterations required is in the 
range of 100 to 100~such as in Section IV. Of course, if 
one is willing to live dangerously, it is possible to use the 
derived error estimates (Eqs. (C6) and (C7)) to obtain an 
approximation of the “correct” value for Pk. 

1 

0.1 

0.01 

t = 2.32 s 1 o-3 

10-4 
i0 -5 

1 o-6 

P, (theory) 

A P, (DsMC) 10-l' 

lo-'2 

* P, (recursive iteration) 10-13 

10-14 

10-15 
, o-!6 

k 

FIG. Cl. P, versus k for the Case 2 (see Section III) coagulation 
kernel: K, = A(i + j). At r = 2.32 s the Monte-Carlo code has mapped out 
the size spectrum for clusters containing 1 to 400 structural units (open 
triangles). From this information, a value of N is obtained and P, is 
calculated via (Cl) for k E { 500,600, . . . . 900, 1000,2000, . . . . 10,000) (stars). 
Also shown is the theoretically determined solution (solid line). The 
vertical separation between the stars and the line is the error incurred 
from the iteration of Eq. (Cl) (see the text). 
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